


## PERSONAL INTRODUCTION



### Bart van Kempen

#### Background

MSc in Earth Sciences, graduated in 2010.

#### Working experience

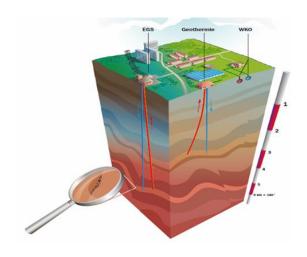
2010 – 2012: PanTerra Geoconsultants

Special Core Analyst

2012 – present: TNO – Geological Survey of The Netherlands

Advisory Group for the Ministry of Economic Affairs (AGE)

Cluster Lead Geothermal Energy


Specialised on reservoir characterisation (Petrophysics, Well Testing)

# **GEOTHERMAL ENERGY @ TNO-AGE**



#### Purpose and task TNO-AGE (Advisory Group for Economic affairs)

- Supporting <u>Ministry of EZK</u> and <u>SodM</u> in formulating and executing policy regarding subsurface activities covered by the Mining Law.
- Geothermal related work at AGE includes:
  - Collecting, QC and analysis of operator data
  - Licence applications
  - Financial support measures
  - Policy making
  - Reservoir potential studies
  - Informing parties ((local) government, (potential) operators, etc.)
- ➤ Geotechnical evaluations → major role for reservoir characterization.



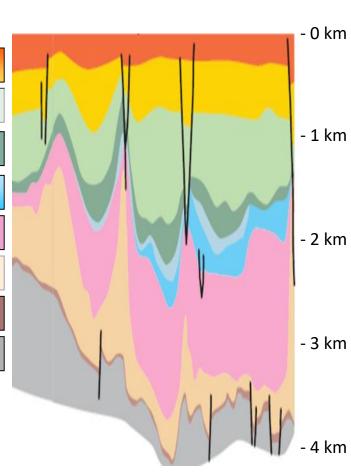
# **GEOTHERMAL =>AQUIFERS<= 0&G**



**Noordzee Group** (storage radioactive waste, shallow applications, **geothermal energy**)

**Chalk Groep** (limited potential)

Rijnland Group (oil/gas, geothermal energy)


Altena, Schieland Groups (oil/gas, geothermal energy)

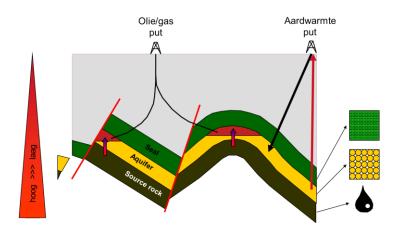
Trias Group (gas/oil, geothermal energy, storage, salt)

**Zechstein Groep** (salt, storage, oil/gas)

Rotliegend Group (gas, geothermal energy, storage, buffering)

Carboniferous (gas, <u>ultra deep geothermal energy</u>, shale gas, CBM)




# PETROPHYSICS IN GEOTHERMAL PROJECTS



Oil & Gas

Porosity
Saturation
Net Thickness
Permeability

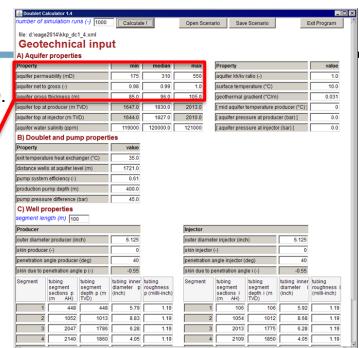
Geothermal
Permeability
Net Thickness
Porosity
Saturation

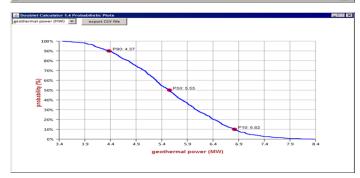


- Similar to petrophysics in oil & gas E&P, but different focus.
- Geothermal energy still small scale.
  - > Highly dependent on data from oil & gas industry, lack of data in geothermal wells.
- Geothermal projects mainly in grabens, gas fields in horst blocks.
- (Primary) permeability and net thickness govern success of geothermal project.
  - Fraccing not yet applied and difficult onshore.



# RESERVOIR EVALUATION OF A GEOTHERMAL PROJECT


## **ESTIMATING GEOTHERMAL POWER**


- Calculations based on DoubletCalc software, developed by TNO.
- DoubletCalc 1D, DoubletCalc 2D.

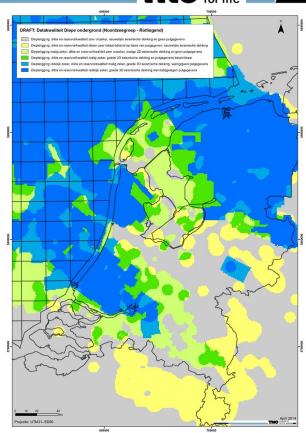
Flow equation (Verruijt 1970, Dake 1978):

$$\Delta p_{w,aq} = p_w - p_{aq} = Q_v \frac{\mu}{2\pi k H R_{ntg}} \left( \ln \left( \frac{L}{r_{out,w}} \right) + S \right)$$

| Property                    | min  | median | max   |
|-----------------------------|------|--------|-------|
| aquifer permeability (mD)   | 175  | 310    | 550   |
| aquifer net to gross (-)    | 0.98 | 0.99   | 1.0   |
| aquifer gross thickness (m) | 85.0 | 96.0   | 105.0 |






## **GROSS THICKNESS**



- Good seismic data coverage, especially in oil & gas provinces.
- Sufficient amount of wells.
- Triassic & Rotliegend: thickness laterally highly continuous.

#### **However:**

- Heat demand also outside oil & gas provinces.
  - Need for additional seismic data.
- Nieuwerkerk Fm. primary target reservoir in the Westland area.
  - ➤ Fluviatile, syn-sedimentary interval → highly variable thickness.
  - Oil & gas wells usually in highs, geothermal wells in lows.



Seismic data coverage (ref: TNO).

## **NET-TO-GROSS RATIO**



#### **Hydrocarbons**

Vcl cutoff Phi cutoff Sw cutoff

| Gross                               | Net Rock                             | Net Reservoir                                  | Net Pay                                       |
|-------------------------------------|--------------------------------------|------------------------------------------------|-----------------------------------------------|
| All Rock Between geological markers | Rock that can store hydrocarbons     | Rock that can store hydrocarbons that can flow | Rock that contains hydrocarbons that can flow |
|                                     |                                      |                                                | Rock that contains no hydrocarbons            |
|                                     |                                      | Rock that can store hydrocarbons               | Rock that can store hydrocarbons              |
|                                     | Rock that can not store hydrocarbons | Rock that can not store hydrocarbons           | Rock that can not store hydrocarbons          |

#### **Geothermal**

Phi cutoff

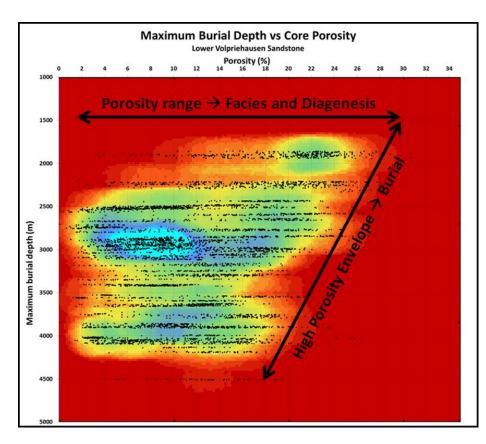
| Gross                                  | Net Reservoir               |  |
|----------------------------------------|-----------------------------|--|
| All Rock Between<br>geological markers | Rock able to flow water     |  |
|                                        | Rock not able to flow water |  |

- In geothermal reservoirs: Sw = 100% → Vcl & Sw cutoffs not required.
- Phi cut-off majorly important:
  - Based on lower k limit for water to flow (1-2 mD).
  - N/G lower for water than for gas.

#### What about fractured reservoirs?

- Possibly pressure dependent N/G
- Use PLT to assess Net thickness and N/G

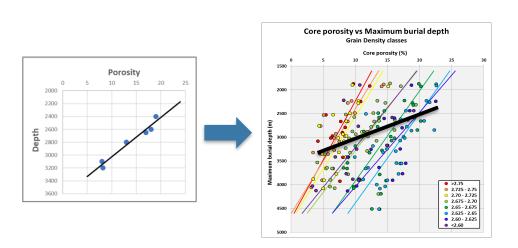
## **POROSITY**

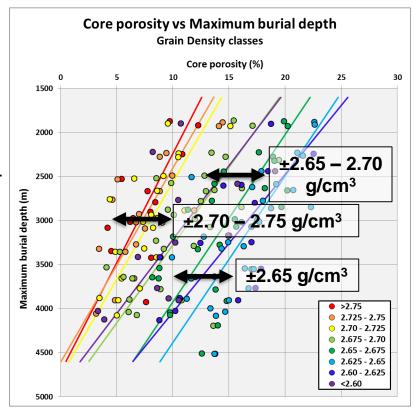



- Approach to determine porosity: local porosity map based on well data.
  - Requirement: availability of local to sub-regional well log data.
  - Use results from conventional petrophysical analyses.
  - Most important: incorporate geological concepts!
    - Sedimentary facies, diagenesis, burial depth, faulting, etc.
    - Give more weight, or exclude data points.
    - Distance to the target location
- Lack of porosity logs in most geothermal wells is problematic:
  - Unable to calculate accurate porosity.
  - Rough indication of porosity possible via GR-Phi transform.
  - Or from interference well test.
- Other estimation methods, e.g. seismic inversion, but geothermal projects are usually low budget w.r.t. hydrocarbon projects.

## POROSITY DECREASE WITH BURIAL DEPTH




- Decrease of porosity with depth is irreversible, therefore maximum burial depth should be taken into account when:
  - Local wells from horst blocks, but project in graben.
  - Project is located in heavily inverted fault block.
- Adequate poro-depth trend not easy to determine:
  - Scatter due to clay and pore cement.
  - But high-porosity envelope usually visible.




# POROSITY DECREASE WITH BURIAL DEPTH

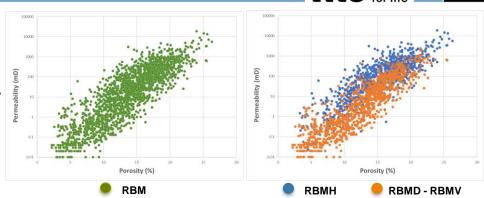


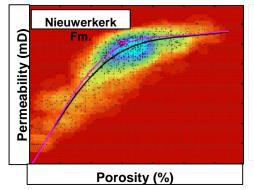
- Poro-depth trend becomes more clear when adding matrix density attributes.
- Based on an indication of the mineralogy (and expected matrix density) a porosity range can be determined.
- Note: careful with small data sets.
  - Good fit, but unrealistic trend due to facies & diagenesis.

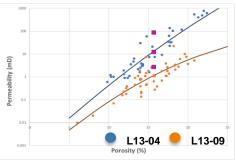




Van Kempen et al., 2018 (in prep.)


## **PERMEABILITY**





- Permeability has major impact on flow rate, but is usually most uncertain.
- Permeability can be calculated from:
  - ) Petrophysics
  - Core data
  - Well Test
  - Production data
- Well Test results generally preferred → most representative reservoir average.

## PERMEABILITY FROM PETROPHYSICS

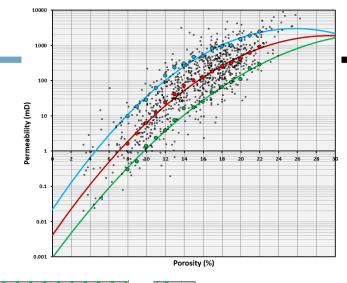
- Important to define representative poro-perm relation based on core data.
  - Use intrinsic permeability, e.g. Juhasz (1986).
  - Use curved or bi-linear transforms.
  - Use representative data selection.
    - Proper stratigraphic interval(s)
    - Complete core data collection
    - Same sedimentary facies
- Use appropriate averaging method that reflects reservoir geometry.
  - Arithmetic, geometric, or different...
- ) Underexplored intervals → e.g. Brussels Sand
  - Use alternatives: k based on grain size and sorting (Van Baaren, 1978).

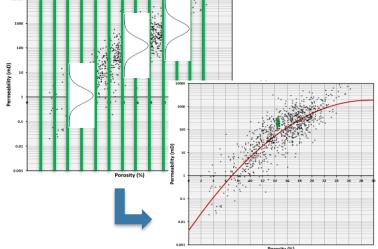






innovation


## PERMEABILITY UNCERTAINTY


#### Uncertainty based on core data:

- Define phi bins → calculate P10, P50, P90 of k value per bin.
- Result: P10, P50 and P90 poro-perm transform.
- **However**, this implies certain geological concept.

#### Alternative: independent uncertainty analysis

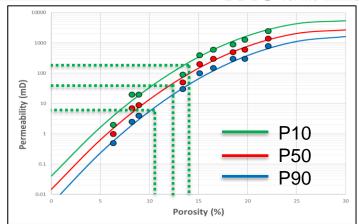
- 1) Define phi bins → define norm. dist. of k values per bin.
- 2) For each value of phi curve: randomly pick k value from normal distributions.
- 3) Calculate average reservoir k.
- 4) Repeat n times and calculate P10, P50 and P90 from reservoir k averages.
- Define uncertainty based on geological concept.

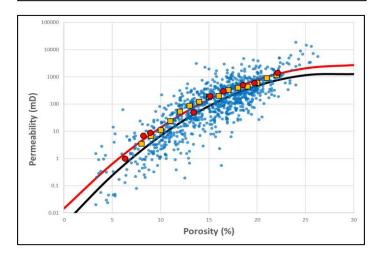




## RESERVOIR AVERAGE PERMEABILITY




Next step: reservoir permeability at target location.


#### Reservoir average poro-perm plot

- ) Based on reservoir averages.
- ) Different scale w.r.t. core poro-perm plot.
  - Difference due to averaging method.

#### Directly from core poro-perm plot

- When petrophysical analyses are lacking.
- Based on Swanson's Mean Average (SMA).
  - Define phi bins, calculate SMA.
  - > SMA: 0.3\*P10 + 0.4\*P50 + 0.3\*P90.
- Validation with well test data required.
  - Some recent geothermal wells show good match.





## (MIS)-MATCH PETROPHYSICS – WELL TEST DATA



- Often mis-match between permeability from well test and petrophysics. Many reasons:
  - Non-representative poro-perm transform.
  - Inappropriate averaging of permeability curve.
  - Rel-perm effects in case of gas wells.
  - Uncertainty in net thickness.
  - Quality of well test data.
  - ) Etc.
- General observations of permeability:
  - Upper Jurassic/Lower Cretaceous reservoir: well test > petrophysics
  - Triassic/Permian reservoirs: well test < petrophysics</p>
- Most recent geothermal projects show better fit.
  - Quality of well tests is improving.
  - Better understanding of reservoir behaviour and translation into petrophysical analysis.



## REFERENCES

- Baaren, J.P. van, 1978. Quick-look permeability estimates using sidewall samples and porosity logs. Publication 534; Koninklijke Shell Exploratie en Produktie Laboratorium, Rijswijk.
- Juhasz, I, 1986. Conversion of routine air-permeability data into stressed brine-permeability data. SPWLA 10<sup>th</sup> European Formation Evaluation Symposium, September 1986, London.
- Yempen, B.M.M. van, Mijnlieff, H.M., Molen, J. van der, 2018 (in prep). Data Mining in the Dutch Oil and Gas Portal: a case study on the reservoir properties of the Volpriehausen Sandstone interval. Mesozoic Resource Potential in the Southern Permian Basin. Geological Society, London, Special Publications.

